

Problem: Propagation of uncertainty through a real valued, continuous function

$$y = G(a, b)$$

of two real parameters a, b. Specification of uncertainty of a, b by: intervals, sets of intervals, probability distributions, sets of probability distributions, or a combination thereof.

A-priori choice of interpretation:

"sets of intervals with equally credible sources" = "random set with uniform weights".

Our appoach: Interpret all types of uncertainties of the input data as sets of probablity measures.

Output: lower and upper probabilities

$$\underline{P}(y \in C) \le \overline{P}(y \in C)$$

for arbitrary Borel sets $C \subset \mathbb{R}$.

The univariate case

Hypotheses: $G : \mathbb{R} \to \mathbb{R}$ is a continuous function, y = G(a); C is a Borel subset of \mathbb{R} .

Consistency: \underline{P} , \overline{P} coincide with the usual interpretation – endpoints of intervals, belief and plausibility, necessity and possibility.

Intervals: The uncertainty of a is specified by a closed interval $A \subset \mathbb{R}$. Then

$$G(A) = [\inf\{G(x) : x \in A\}, \sup\{G(x) : x \in A\}].$$

The upper probability is

$$\widetilde{P}(y \in C) = \begin{cases} 1, & G(A) \cap C \neq \emptyset \\ 0, & G(A) \cap C = \emptyset \end{cases}$$

Interpreting A as the set \mathfrak{M} of all probability measures on A, the corresponding upper probability is

$$\overline{P}(y \in C) = \sup\{p(G^{-1}(C)) : p \in \mathcal{M}\}\$$

= $\widetilde{P}(y \in C)$. (Consistency)

Random sets: a is modeled by a random set with focal sets A^i and weights $m(A^i)$. Plausibility measure:

$$\widetilde{P}(y \in C) = \sum_{G(A^i) \cap C \neq \varnothing} m(A^i).$$

Alternatively, a is the set of probabilities of the form $p = \sum m(A^i)p_i$ where each p_i belongs to the set \mathcal{M}^i of probability measures on A^i . Upper probability:

$$\overline{P}(y \in C) = \sup\{p(G^{-1}(C)) : p = \sum m(A^i)p_i, \ p_i \in \mathcal{M}^i\}$$
$$= \widetilde{P}(y \in C) . \quad \text{(Consistency)}$$

Sets of probability measures: a is modeled by a family of probability measures $\{p_{\lambda} : \lambda \in \Lambda\}$. If Λ is just a set, we put

$$\widetilde{P}(y \in C) = \sup\{p_{\lambda}(G^{-1}(C)) : \lambda \in \Lambda\}.$$

If Λ is itself a probability space with a (single) measure π , we define

$$P_{\pi}(y \in C) = \int_{\Lambda} p_{\lambda}(G^{-1}(C)) d\pi(\lambda).$$

If Λ is equipped with a family $\mathfrak M$ of probability measures, the corresponding upper probability is defined by

$$\overline{P}(y \in C) = \sup\{P_{\pi}(y \in C) : \pi \in \mathcal{M}\}.$$

Then always

$$\overline{P}(y \in C) \le \widetilde{P}(y \in C)$$
.

Equality holds if \mathcal{M} contains all Dirac measures situated at the points of Λ . (Consistency)

Fuzzy sets: a is a fuzzy set with membership function $\mu_a : \mathbb{R} \to [0, 1]$. Possibility distribution on \mathbb{R} :

$$\mu_a(B) = \sup\{\mu_a(x) : x \in B\}$$

where $B \subset \mathbb{R}$. Wellknown:

$$\mu_a(x) = \sup\{p(\{x\}) : p \prec \mu_a\}.$$

Possibility degree of C under the function G:

$$\mu_{G(a)}(C) = \sup{\{\mu_a(x) : x \in G^{-1}(y), y \in C\}}.$$

Upper probability:

$$\overline{P}(y \in C) = \sup\{p(G^{-1}(C)) : p \prec \mu_a\}$$

= $\mu_{G(a)}(C)$. (Consistency)

The multivariate case

The joint probability measures are of the form

$$P = \sum_{i=1}^{n_1} \sum_{j=1}^{n_2} m(A_1^i \times A_2^j) P^{ij}$$

and have marginals in \mathcal{M}_1 , respectively \mathcal{M}_2 ; m is the joint weight function and P^{ij} are measures on $A_1^i \times A_2^j$. The results crucially depend on the notion of independence chosen – the question of interaction becomes decisive and requires a choice!

Notation: the marginals of P^{ij} in \mathcal{M}_1^i and \mathcal{M}_2^j will be denoted by $P_1^{i,ij}$ and $P_2^{j,ij}$, respectively.

Strong independence:

- Joint weights $m(A_1^i \times A_2^j) = m_1(A_1^i) m_2(A_2^j)$.
- $\bullet \ P^{ij} = P_1^{i,ij} \otimes P_2^{j,ij}.$
- P_1^{ij} satisfies $P_1^{i,i1} = P_1^{i,i2} = \cdots = P_1^{i,in_2}$ and $P_2^{j,1j} = P_2^{j,2j} = \cdots = P_2^{j,n_1j}$.

 $\mathcal{M}_{S} = \{P_1 \otimes P_2 : P_1 \in \mathcal{M}_1, P_2 \in \mathcal{M}_2\}$ is the set of joint probability measures.

Random set independence (Dempster-Shafer):

- Joint weights $m(A_1^i \times A_2^j) = m_1(A_1^i) m_2(A_2^j)$.
- P^{ij} are arbitrary with marginals in \mathcal{M}_1^i , \mathcal{M}_2^j .
- Condition \star is dropped.

Unknown interaction (correlation):

- Weights $m(A_1^i \times A_2^j)$ are arbitrary subject to $\sum_{j=1}^{n_2} m(A_1^i \times A_2^j) = m_1(A_1^i), \sum_{i=1}^{n_1} m(A_1^i \times A_2^j) = m_2(A_2^j).$
- Measures P^{ij} as for random set independence.

$$\mathcal{M}_{\mathrm{U}} = \{ P : P(\cdot \times \mathbb{R}) \in \mathcal{M}_{1}, \ P(\mathbb{R} \times \cdot) \in \mathcal{M}_{2} \}.$$

Fuzzy set independence:

- In the case of consonant focal sets a random set a_k generates a fuzzy set \tilde{a}_k .
- The re-interpretation of the joint fuzzy set $\tilde{a} = \tilde{a}_1 \times \tilde{a}_2$ as a random set leads to the same joint focals as above, but in general with different weights.

Combination of probability measures

parametrized by random sets: Here the set \mathcal{M}_k^i is a set of probability measures $p_{a_k^i}$ parameterized by probability measures on the focal set A_k^i :

$$\mathcal{M}_{k}^{i} = \{ P_{\pi} : P_{\pi} = \int_{A_{k}^{i}} p_{a_{k}^{i}}(\cdot) d\pi(a_{k}^{i}), \ \pi(A_{k}^{i}) = 1 \}.$$

For challenge problem 1 the lower and upper complementary cumulative distribution functions $\underline{F}(y_f) = \underline{P}(y \geq y_f)$ and $\overline{F}(y_f) = \overline{P}(y \geq y_f)$ are plotted. We use the indices S, R, U and F to indicate the different types of independence.

Relations between the types of independence.

- $\mathcal{M}_{S} \subseteq \mathcal{M}_{R} \subseteq \mathcal{M}_{U}$ and $\mathcal{M}_{F} \subseteq \mathcal{M}_{U}$,
- $\underline{F}_{\mathrm{U}} \leq \underline{F}_{\mathrm{R}} \leq \underline{F}_{\mathrm{S}} \leq \overline{F}_{\mathrm{S}} \leq \overline{F}_{\mathrm{R}} \leq \overline{F}_{\mathrm{U}}$ and $F_{\mathrm{U}} \leq F_{\mathrm{F}} \leq \overline{F}_{\mathrm{F}} \leq \overline{F}_{\mathrm{U}}$.

Problem 1: interval \times interval.

 $\underline{F}_{S} = \underline{F}_{R} = \underline{F}_{U} = \underline{F}_{F}, \ \overline{F}_{S} = \overline{F}_{R} = \overline{F}_{U} = \overline{F}_{F}$ and resulting interval $y_{1} = [0.6922, 2]$, see problem 2.

Problem 2: interval \times random interval.

- The joint weights $m(A_1^i \times A_2^j)$ are unique.
- Due to the monotonicity of $(a_1 + a_2)^{a_1}$ in the a_2 -direction, dropping the condition \star does not change the result $\Longrightarrow \underline{F}_S = \underline{F}_R$, $\overline{F}_S = \overline{F}_R$.

Problem 3: random interval \times random interval.

- By the same arguments as in problem 2: $\underline{F}_{S} = \underline{F}_{R}$ and $\overline{F}_{S} = \overline{F}_{R}$.
- The joint weights are not uniquely determined: Different results for random set independence, fuzzy set independence and unknown interaction.

Problem 4:

interval \times probability measure parametrized by an interval.

• By similar arguments as for problem 1 and 2: $\underline{F}_{S} = \underline{F}_{R} = \underline{F}_{U} = \underline{F}_{F}, \overline{F}_{S} = \overline{F}_{R} = \overline{F}_{U} = \overline{F}_{F}.$

Problem 5: random interval × probability measure parametrized by a random interval.

• $\overline{F}_{S}(y_f) < \overline{F}_{R}(y_f)$ holds for some y_f .

Problem 6: interval \times probability measure.

